
 

 

5 tips to write efficient queries with JPA and Hibernate 

www.thoughts-on-java.org 

1. Choose a projection that fits your use case 
You should decide for each use case, which information it needs and 
which operations it has to perform and choose accordingly. 

Entities are a good fit if you have to update or remove a record. They 
might also be ok for use cases which need to read (almost) all entity 
attributes. But keep in mind that the persistence context has to 
manage the entities which creates an overhead compared to a DTO 
projection. 

DTO’s are a good fit for use cases that only need to read a record if 
they provide all required and no additional properties. That often 
requires you to create a new DTO when you implement a new use 
case. That is where most discussions start. You can’t reuse the same 
DTO and data access services for all use cases if you want to optimize 
for efficiency. 

But don’t worry, this doesn’t have to be a black and white decision. 
Most development teams decide to do a little bit of both. They accept 
minor inefficiencies in their database access and create DTOs that 
are quite a good but not an optimal fit for multiple use cases to 
improve reusability. That’s totally fine. You just have to be aware of it 
so that you can change it if you into performance issues. 

 

2. Avoid eager fetching in your mapping definition 
From a performance point of view, choosing the right FetchTypes for 
your entity associations is one of the most important steps. The 
FetchType defines when Hibernate performs additional queries to 
initialize an association. It can either do that when it loads the entity 
(FetchType.EAGER) or when you use the association 
(FetchType.LAZY). 

It doesn’t make any sense to perform additional queries to load data 
before you know that you need it. You should use FetchType.LAZY by 
default and apply the next tip if a use case uses an entity association. 

 

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/entity-mappings-introduction-jpa-fetchtypes/


 

 

5 tips to write efficient queries with JPA and Hibernate 

www.thoughts-on-java.org 

  

http://www.thoughts-on-java.org/


 

 

5 tips to write efficient queries with JPA and Hibernate 

www.thoughts-on-java.org 

3. Initialize all required associations in your query 
Hibernate has to perform additional queries to load uninitialized, lazy 
associations. When you do that for multiple entities, you create an 
n+1 select issue. 

You can easily avoid that by initializing all required associations 
within the query that loads your entities. You can either do that with 
a query-independent EntityGraph or with a simple JOIN FETCH 
clause in your JPQL or Criteria Query. 

 

4. Use pagination when you select a list of entities  
Humans can’t handle lists with hundreds of elements. Most UIs, 
therefore, split them into multiple chunks and present each of them 
on a separate page. 

In these cases, it doesn’t make any sense to fetch all entities or DTOs 
in one query. The UI doesn’t need them, and it just slows down your 
application. It’s much better to use the same pagination approach in 
your query and fetch only the records that are shown in the UI. You 
can do that by setting appropriate values for firstResult and 
maxResult on the Query interface. 

 

5. Log SQL statements 
You should always check the executed SQL statements when you 
apply any changes to your code. The easiest way to do that is to 
activate the logging of SQL statements in your development 
configuration. You can do that by setting the log level of 
org.hibernate.SQL to DEBUG. 

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/free-n1_select_course/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-1-named-entity/
http://www.thoughts-on-java.org/hibernate-tips-initialize-lazy-relationships-within-query/
http://www.thoughts-on-java.org/hibernate-tips-initialize-lazy-relationships-within-query/
http://www.thoughts-on-java.org/hibernate-tips-use-pagination-jpql/
http://www.thoughts-on-java.org/hibernate-tips-use-pagination-jpql/
http://www.thoughts-on-java.org/hibernate-logging-guide/
http://www.thoughts-on-java.org/hibernate-logging-guide/

